منابع مشابه
Geodesic Distance in Planar Graphs: An Integrable Approach
We discuss the enumeration of planar graphs using bijections with suitably decorated trees, which allow for keeping track of the geodesic distances between faces of the graph. The corresponding generating functions obey non-linear recursion relations on the geodesic distance. These are solved by use of stationary multi-soliton tau-functions of suitable reductions of the KP hierarchy. We obtain ...
متن کاملManhattan-Geodesic Embedding of Planar Graphs
In this paper, we explore a new convention for drawing graphs, the (Manhattan-) geodesic drawing convention. It requires that edges are drawn as interior-disjoint monotone chains of axis-parallel line segments, that is, as geodesics with respect to the Manhattan metric. First, we show that geodesic embeddability on the grid is equivalent to 1-bend embeddability on the grid. For the latter quest...
متن کاملImproved Distance Queries in Planar Graphs
There are several known data structures that answer distance queries between two arbitrary vertices in a planar graph. The tradeoff is among preprocessing time, storage space and query time. In this paper we present three data structures that answer such queries, each with its own advantage over previous data structures. The first one improves the query time of data structures of linear space. ...
متن کاملExact distance oracles for planar graphs
We present new and improved data structures that answer exact node-to-node distance queries in planar graphs. Such data structures are also known as distance oracles. For any directed planar graph on n nodes with non-negative lengths we obtain the following: • Given a desired space allocation S ∈ [n lg lgn, n], we show how to construct in Õ(S) time a data structure of size O(S) that answers dis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nuclear Physics B
سال: 2003
ISSN: 0550-3213
DOI: 10.1016/s0550-3213(03)00355-9